EMC announced directed availability for DSSD, their Rack scale shared Flash storage solution using a PCIe3 (switched) fabric with 36 dual ported, flash modules, which hold 512 NAND chips for 144TB NAND flash storage. On the stage floor they had a demonstration pitting a 40 node Hadoop cluster with DAS against a 15 node Hadoop cluster using the DSSD, both running HIVE and working on the same Query. By the time the 40node/DAS solution got to about 2% of the query completion the 15node/DSSD based cluster had finished the query without breaking a sweat. They then ran an even more complex query and it took no time at all. They also simulated a copy of a 4TB file (~32K-128K IOs) from memory to memory and it took literally seconds, then copied it to SSD that took considerably longer (didn’t catch how long but much longer than memory), and then they showed the same file copy to DSSD and it only took seconds, almost looked exactly a smidgen slower than the memory to memory copy.

They said the PCIe fabric (no indication what the driver was) provided much more parallelism to the dual ported flash storage that the system was almost able to complete the 4TB copy at memory to memory speeds. It was all pretty impressive, albeit a simulation of the real thing.

EMC indicated that they designed the flash modules themselves and expect to double capacity of the DSSD to 288TB shortly. They showed the controller board that had a mezzanine board over a part of it, but together had 12 major chips on it which I assume had something to do with the PCIe fabric. They said there were two controllers in the system for high availability and the 144TB DSSD was deployed in 5U of space.

I can see how this would play well for real time analytics, high frequency trading and HPC environments but there’s more to shared storage than just speed. Cost wasn’t mentioned neither was the software driver but with the ease with which it worked on the Hive query, I can only assume at some lever it must look something like a DAS device but with memory access times… NVMe anyone?